p53 deficiency accelerates induction and progression of esophageal and forestomach tumors in zinc-deficient mice.

نویسندگان

  • Louise Y Y Fong
  • Hideshi Ishii
  • Vu T Nguyen
  • Andrea Vecchione
  • John L Farber
  • Carlo M Croce
  • Kay Huebner
چکیده

The p53 tumor suppressor protein plays a pivotal role in preventing uncontrolled cellular proliferation. By contrast, zinc deprivation enhances esophageal cell proliferation and the induction of esophageal tumors in rodents by N-nitrosomethylbenzylamine (NMBA). We investigated whether p53 deficiency rendered zinc-deficient (ZD) mice more susceptible to NMBA-induced esophageal/forestomach carcinogenesis. At 6-7 weeks of age, p53 null (-/-), heterozygous (+/-), and wild-type (+/+) mice were placed on ZD or zinc-sufficient (ZS) diets to form six experimental groups: ZD:p53-/-; ZD:p53+/-; ZD:p53+/+; ZS:p53-/-; ZS:p53+/-; and ZS:p53+/+. After 3 weeks, 15-23 mice in each group were treated once with NMBA (2 mg/kg body weight). Control animals were untreated. Zinc deficiency alone induced unrestrained cellular proliferation in the esophagus and forestomach of p53-/- mice. Forestomach tumors were first detected in a ZD:p53-/- mouse at 13 days. By 30 days, 100% (21 of 21) of ZD:p53-/- mice developed forestomach tumors and 38% showed esophageal tumors versus 42 and 0% in ZS:p53-/- mice (P < 0.004, esophagus; P < 0.001, forestomach). ZD:p53-/- mice showed an accelerated progression to malignancy, with 10% of esophageal tumors and 38% of forestomach tumors presenting as carcinomas. Nearly 20% of ZD:p53-/- mice developed esophageal Barrett's metaplasia, a lesion not previously seen in NMBA-induced neoplasia. ZD:p53+/- mice had significantly higher tumor incidence than ZS:p53+/- mice. The order of tumor incidence in forestomach was as follows: naught incidence in ZS:p53+/+ mice; ZD:p53-/- > ZD:p53+/- > ZS:p53-/- > ZD:p53+/+ >/= ZS:p53+/- > ZS:p53+/+. The rapid rate of tumor induction/progression in ZD:p53-/- mice was accompanied by an increase in the rate of cell proliferation and a decrease in apoptosis. cDNA array expression analysis of known genes identified a 5-fold up-regulation of cytokeratin 14 mRNA expression in ZD:p53-/- versus ZS:p53-/- forestomach, a result showing gene-modulating effects of zinc deficiency. Cytokeratin 14 is a biomarker in human esophageal carcinogenesis. Our findings provide in vivo evidence for the collaboration of a deficiency of both p53 and zinc in esophageal carcinogenesis and reveal molecular targets of this collaboration.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Combined cyclin D1 overexpression and zinc deficiency disrupts cell cycle and accelerates mouse forestomach carcinogenesis.

Overexpression of cyclin D1 and disruption of cell cycle control in G(1) occur frequently in human esophageal cancer. Transgenic (TG) mice with cyclin D1 overexpression targeted to the oral-esophageal tissue by the EBV ED-L2 promoter showed increased severity in esophageal dysplasia without cancer development, after multiple doses of N-nitrosomethylbenzylamine (NMBA). Dietary zinc deficiency (Z...

متن کامل

Zinc deficiency potentiates induction and progression of lingual and esophageal tumors in p53-deficient mice.

Upper aerodigestive tract (UADT) cancer, including oral and esophageal cancer, is an important cause of cancer deaths worldwide. Patients with UADT cancer are frequently zinc deficient (ZD) and show a loss of function of the pivotal tumor suppressor gene p53. The present study examined whether zinc deficiency in collaboration with p53 insufficiency (p53+/-) promotes lingual and esophageal tumor...

متن کامل

Zinc deficiency activates S100A8 inflammation in the absence of COX-2 and promotes murine oral-esophageal tumor progression

Zinc (Zn)-deficiency (ZD) is implicated in the pathogenesis of human oral-esophageal cancers. Previously, we showed that in ZD mice genetic deletion of cyclooxygenase-2 (Cox-2) enhances N-nitrosomethylbenzylamine-induced forestomach carcinogenesis. By contrast, Cox-2 deletion offers protection in Zn-sufficient (ZS) mice. We hypothesize that ZD activates pathways insensitive to COX-2 inhibition,...

متن کامل

Synergistic function of Smad4 and PTEN in suppressing forestomach squamous cell carcinoma in the mouse.

The genetic bases underlying esophageal tumorigenesis are poorly understood. Our previous studies have shown that coordinated deletion of the Smad4 and PTEN genes results in accelerated hair loss and skin tumor formation in mice. Herein, we exemplify that the concomitant inactivation of Smad4 and PTEN accelerates spontaneous forestomach carcinogenesis at complete penetrance during the first 2 m...

متن کامل

Induction of esophageal tumors in zinc-deficient rats by single low doses of N-nitrosomethylbenzylamine (NMBA): analysis of cell proliferation, and mutations in H-ras and p53 genes.

Dietary zinc deficiency in rats induces hyperplasia in the esophagus and increases N-nitrosomethylbenzylamine (NMBA)-induced esophageal tumor incidence. Previous work showed a direct relationship between epithelial cell proliferation and esophageal tumor incidence in rats given multiple doses of NMBA. We investigated the effects of single low doses of NMBA in zinc-deficient rats since a single ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Cancer research

دوره 63 1  شماره 

صفحات  -

تاریخ انتشار 2003